Degree of a field extension

The dimension [L:K] of L as a K-vector space.
Degree of a field extension

Definition. Let L/KL/K be a . The degree of the extension is

[L:K]  =  dimK(L), [L:K] \;=\; \dim_K(L),

the dimension of LL as a over KK.
If this dimension is finite, L/KL/K is a finite extension; otherwise [L:K]=[L:K]=\infty.

In a tower KFLK\subseteq F\subseteq L with finite degrees, the says [L:K]=[L:F][F:K][L:K]=[L:F]\,[F:K].

See also. , .

Examples.

  1. [C:R]=2[\mathbb{C}:\mathbb{R}]=2 with basis {1,i}\{1,i\}.
  2. [Q(2):Q]=2[\mathbb{Q}(\sqrt2):\mathbb{Q}]=2 with basis {1,2}\{1,\sqrt2\}.
  3. If q=pnq=p^n, then [Fq:Fp]=n[\mathbb{F}_{q}:\mathbb{F}_p]=n (see ).