Artin's Theorem on Fixed Fields

A finite group of automorphisms gives a Galois extension of degree equal to the group order.
Artin's Theorem on Fixed Fields

Theorem (Artin).
Let LL be a field and GG a finite subgroup of of LL. Let

K:=LG={xL:σ(x)=x σG} K := L^G = \{x\in L : \sigma(x)=x\ \forall\sigma\in G\}

be the . Then:

  1. L/KL/K is a finite ,
  2. Gal(L/K)=G\mathrm{Gal}(L/K)=G, and
  3. [L:K]=G[L:K]=|G| (compare ).

A standard tool in the proof is the .

Examples.

  1. L=CL=\mathbb{C}, G={1,complex conjugation}G=\{1,\text{complex conjugation}\}. Then LG=RL^G=\mathbb{R} and [C:R]=2=G[\mathbb{C}:\mathbb{R}]=2=|G|.
  2. L=FpnL=\mathbb{F}_{p^n}, G=xxpG=\langle x\mapsto x^p\rangle has order nn. Then LG=FpL^G=\mathbb{F}_p.
  3. Cyclotomic example: L=Q(ζm)L=\mathbb{Q}(\zeta_m) with automorphisms ζmζma\zeta_m\mapsto \zeta_m^a ((a,m)=1(a,m)=1); fixed fields correspond to subgroups of (Z/mZ)×(\mathbb{Z}/m\mathbb{Z})^\times via .

Related. , .