Nullstellensatz corollary: maximal ideals are points

Over an algebraically closed field, maximal ideals in k[x1,...,xn] are exactly kernels of evaluation at points.
Nullstellensatz corollary: maximal ideals are points

Corollary (Nullstellensatz: maximal ideals correspond to points).
Let kk be an algebraically closed and let R=k[x1,,xn]R=k[x_1,\dots,x_n]. Then every mR\mathfrak m\subset R is of the form

m  =  (x1a1,,xnan) \mathfrak m \;=\; (x_1-a_1,\dots,x_n-a_n)

for a unique point a=(a1,,an)kna=(a_1,\dots,a_n)\in k^n. Equivalently,

R/m    k,andm=ker(eva), R/\mathfrak m \;\cong\; k, \quad\text{and}\quad \mathfrak m = \ker(\mathrm{ev}_a),

where eva\mathrm{ev}_a is evaluation at aa.

This is a standard corollary of the (weak) , and it underlies the .

Related knowls.

Examples

  1. One variable over C\mathbb{C}.
    In C[x]\mathbb{C}[x], the maximal ideals are exactly (xa)(x-a) with aCa\in\mathbb{C}. The quotient C[x]/(xa)C\mathbb{C}[x]/(x-a)\cong\mathbb{C}.

  2. A point in C2\mathbb{C}^2.
    In C[x,y]\mathbb{C}[x,y], the ideal

    (x1,  yi) (x-1,\;y-i)

    is maximal and corresponds to the point (1,i)C2(1,i)\in\mathbb{C}^2. Indeed, C[x,y]/(x1,yi)C\mathbb{C}[x,y]/(x-1,y-i)\cong\mathbb{C}.

  3. Why “algebraically closed” matters.
    Over R\mathbb{R}, the ideal (x2+1)R[x](x^2+1)\subset\mathbb{R}[x] is maximal, but it is not of the form (xa)(x-a) for any aRa\in\mathbb{R}. (Its quotient is R[x]/(x2+1)C\mathbb{R}[x]/(x^2+1)\cong\mathbb{C}.)