Noether Normalization Lemma

A finitely generated k-algebra is integral over a polynomial subalgebra in d variables.
Noether Normalization Lemma

Statement

Let kk be a and let AA be a finitely generated commutative kk-algebra. Then there exist elements

y1,,ydA y_1,\dots,y_d \in A

that are algebraically independent over kk such that the natural inclusion

k[y1,,yd]A k[y_1,\dots,y_d] \hookrightarrow A

makes AA an , i.e. every element of AA is over k[y1,,yd]k[y_1,\dots,y_d]. Equivalently, AA is a finite (module-finite) k[y1,,yd]k[y_1,\dots,y_d]-module.

Consequences/interpretation:

Examples

  1. Polynomial ring itself.
    If A=k[x1,,xn]A=k[x_1,\dots,x_n], take yi=xiy_i=x_i. Then A=k[y1,,yn]A=k[y_1,\dots,y_n], so AA is (trivially) integral over the polynomial subalgebra, with d=nd=n.

  2. A parabola (finite map to A1\mathbb A^1).
    Let

    A=k[x,y]/(yx2). A = k[x,y]/(y-x^2).

    Set t=yAt=y\in A. Then xx satisfies the monic polynomial

    X2t=0in A, X^2 - t = 0 \quad\text{in } A,

    so xx is integral over k[t]k[t]. Hence AA is integral (indeed finite) over k[t]k[t], and d=1d=1.

  3. Union of coordinate axes.
    Let

    A=k[x,y]/(xy). A = k[x,y]/(xy).

    Set t=x+yAt=x+y\in A. Then xx satisfies

    X2tX=0 X^2 - tX = 0

    because x2(x+y)x=x2x2xy=0x^2 - (x+y)x = x^2 - x^2 - xy = 0 in AA. This is monic in XX, so xx is integral over k[t]k[t], and then y=txy=t-x is also integral. Thus AA is integral over k[t]k[t], again with d=1d=1.