Nakayama's Lemma

Over a local ring, a finitely generated module cannot be equal to its maximal-ideal multiple unless it is zero.
Nakayama's Lemma

Statement

Let (R,m)(R,\mathfrak m) be a with maximal ideal m\mathfrak m, and let MM be a finitely generated (see ).

Nakayama’s Lemma says:

  1. If

    mM=M, \mathfrak m M = M,

    then M=0M=0.

  2. More generally, if NMN\subseteq M and

    M=N+mM, M = N + \mathfrak m M,

    then M=NM=N.

A common general form replaces m\mathfrak m by any ideal IHAHAHUGOSHORTCODE75s3HBHBI\subseteq .

Examples

  1. Minimal number of generators via M/mMM/\mathfrak m M.
    Let R=k[x,y](x,y)R = k[x,y]_{(x,y)}, so m=(x,y)\mathfrak m=(x,y). Consider M=mM=\mathfrak m as an RR-module.
    The quotient m/m2 \mathfrak m/\mathfrak m^2 is a 2-dimensional vector space over the kk, with basis given by the classes of xx and yy.
    Nakayama implies m\mathfrak m cannot be generated by 1 element; it needs at least 2 (and in fact x,yx,y generate it).

  2. A cyclic module detected mod m\mathfrak m.
    Let R=Z(p)R=\mathbb Z_{(p)} (localization at (p)(p)), m=(p)\mathfrak m=(p), and M=R/(p2)M=R/(p^2).
    Then M/mMR/(p)M/\mathfrak m M \cong R/(p) is 1-dimensional over Fp\mathbb F_p, so Nakayama implies MM is generated by one element (indeed, by the class of 11).

  3. “Generating modulo m\mathfrak m generates.”
    In any local ring (R,m)(R,\mathfrak m), if elements m1,,mrMm_1,\dots,m_r\in M map to generators of the vector space M/mMM/\mathfrak m M over R/mR/\mathfrak m, then m1,,mrm_1,\dots,m_r generate MM.
    This is a direct application of the form M=N+mMM=NM=N+\mathfrak m M \Rightarrow M=N with N=Rm1++RmrN=Rm_1+\cdots+Rm_r.