Prime correspondence under localization

Prime ideals of a localization correspond to primes in the original ring disjoint from the multiplicative set.
Prime correspondence under localization

Let RR be a commutative ring and SRS\subseteq R a . Write S1RS^{-1}R for the .

Theorem (prime correspondence)

There is an inclusion-preserving bijection

{prime ideals PS1R}    {prime ideals pR with pS=} \Big\{\text{prime ideals } \mathfrak P \subset S^{-1}R\Big\} \;\longleftrightarrow\; \Big\{\text{prime ideals } \mathfrak p \subset R \text{ with } \mathfrak p\cap S=\varnothing\Big\}

given by:

  • contraction: Pp={rR:r/1P}\mathfrak P \mapsto \mathfrak p = \{\,r\in R : r/1\in \mathfrak P\,\},
  • extension: pS1p={r/s:rp,sS}\mathfrak p \mapsto S^{-1}\mathfrak p = \{\,r/s : r\in\mathfrak p,\, s\in S\,\}.

In particular, if pR\mathfrak p\subset R is and we localize at p\mathfrak p (so RpR_{\mathfrak p} is ), then prime ideals of RpR_{\mathfrak p} correspond exactly to prime ideals qp\mathfrak q\subseteq \mathfrak p in RR.

Maximal ideals correspond similarly: maximal ideals of S1RS^{-1}R correspond to of RR disjoint from SS.

Examples

  1. Invert 2 in Z\mathbb{Z}.
    Let S={1,2,4,8,}S=\{1,2,4,8,\dots\}. Then S1Z=Z[1/2]S^{-1}\mathbb{Z}=\mathbb{Z}[1/2].
    Prime ideals of Z[1/2]\mathbb{Z}[1/2] correspond to primes pZ\mathfrak p\subset \mathbb{Z} with pS=\mathfrak p\cap S=\varnothing, i.e. (0)(0) and (p)(p) for odd primes pp. The prime (2)(2) disappears because it meets SS.

  2. Localize Z\mathbb{Z} at (p)(p).
    In R=ZR=\mathbb{Z}, take S=Z(p)S=\mathbb{Z}\setminus (p), so S1R=Z(p)S^{-1}R=\mathbb{Z}_{(p)}.
    Prime ideals of Z(p)\mathbb{Z}_{(p)} correspond to primes of Z\mathbb{Z} contained in (p)(p), namely (0)(0) and (p)(p). Thus Spec(Z(p))={(0),(p)}\mathrm{Spec}(\mathbb{Z}_{(p)})=\{(0),(p)\}.

  3. Localize k[x,y]k[x,y] at powers of xx.
    Let R=k[x,y]R=k[x,y] and S={1,x,x2,}S=\{1,x,x^2,\dots\}. Then S1R=RxS^{-1}R=R_x.
    Prime ideals in RxR_x correspond to prime ideals of RR not containing xx. For instance, (y)(y) survives (it does not contain xx), while (x,y)(x,y) does not (it contains xx, hence meets SS).