Localization Preserves Primality

A prime ideal disjoint from S extends to a prime ideal after localization.
Localization Preserves Primality

Statement

Let RR be a commutative ring and SRS\subseteq R a . Let p\mathfrak p be a of RR.

  • If pS=\mathfrak p\cap S=\varnothing, then the extended ideal

    S1pS1R S^{-1}\mathfrak p \subseteq S^{-1}R

    is a prime ideal of S1RS^{-1}R.

  • If pS\mathfrak p\cap S\neq\varnothing, then S1p=S1RS^{-1}\mathfrak p = S^{-1}R (the whole ring), so it is not a proper prime ideal.

This is one direction of the full (primes of S1RS^{-1}R correspond to primes of RR disjoint from SS). Special case: .

Examples

  1. Localizing Z\mathbb Z at a prime pp.
    Take R=ZR=\mathbb Z and S=ZpZS=\mathbb Z\setminus p\mathbb Z, so S1R=Z(p)S^{-1}R=\mathbb Z_{(p)}.
    The primes of Z\mathbb Z disjoint from SS are (0)(0) and (p)(p). Their extensions are

    S1(0)=(0)Z(p),S1(p)=pZ(p), S^{-1}(0)=(0)\subset \mathbb Z_{(p)},\qquad S^{-1}(p)=p\mathbb Z_{(p)},

    both prime in Z(p)\mathbb Z_{(p)}.

  2. Inverting xx in k[x,y]k[x,y].
    Let R=k[x,y]R=k[x,y] and S={1,x,x2,}S=\{1,x,x^2,\dots\}. Then S1Rk[x,x1,y]S^{-1}R\cong k[x,x^{-1},y].

    • The prime (y)(y) satisfies (y)S=(y)\cap S=\varnothing, so its extension (y)S1R(y)S^{-1}R is prime.
    • The prime (x)(x) satisfies (x)S(x)\cap S\neq\varnothing (since xSx\in S), so (x)S1R=S1R(x)S^{-1}R = S^{-1}R.
  3. Prime becomes maximal in a local ring.
    If S=RpS=R\setminus \mathfrak p, then S1R=RpS^{-1}R = R_{\mathfrak p} is and the extension pRp\mathfrak pR_{\mathfrak p} is the unique maximal ideal, hence prime.