Localization of a module

For an R-module M and multiplicative set S, the localization S^{-1}M is obtained by inverting S, equivalently M ⊗_R S^{-1}R.
Localization of a module

Let RR be a commutative , let SRS\subseteq R be a , and let MM be an .

Definition

The localization of MM at SS, written S1MS^{-1}M, can be defined in either of two equivalent ways:

  1. Fractions: elements are symbols ms\frac{m}{s} with mMm\in M, sSs\in S, modulo the relation

    ms=ms    tS such that t(smsm)=0 in M. \frac{m}{s}=\frac{m'}{s'} \iff \exists\, t\in S\text{ such that } t(s'm-sm')=0 \text{ in } M.

    Operations are

    ms+ms=sm+smss,rums=rmus. \frac{m}{s}+\frac{m'}{s'}=\frac{s'm+sm'}{ss'},\qquad \frac{r}{u}\cdot \frac{m}{s}=\frac{rm}{us}.

    (Here ruS1R\frac{r}{u}\in S^{-1}R acts on ms\frac{m}{s}.)

  2. Tensor product: there is a canonical isomorphism

    S1M    MRS1R, S^{-1}M \;\cong\; M\otimes_R S^{-1}R,

    where \otimes is the and S1RS^{-1}R is the .

This makes S1MS^{-1}M naturally into an S1RS^{-1}R-module.

Examples

  1. Localizing the ring itself.
    Taking M=RM=R, one recovers the ring localization:

    S1RS1M. S^{-1}R \cong S^{-1}M.
  2. Invert 2 on an abelian group.
    With R=ZR=\mathbb Z, M=ZM=\mathbb Z, and S={1,2,22,}S=\{1,2,2^2,\dots\},

    S1MZ[12] S^{-1}M \cong \mathbb Z\left[\tfrac12\right]

    as a module over S1ZS^{-1}\mathbb Z.

  3. A localization that kills a module.
    Let R=k[x]R=k[x], M=R/(x)M=R/(x), and S={1,x,x2,}S=\{1,x,x^2,\dots\}. Since xx acts as 00 on MM but becomes invertible after localization, one gets

    S1M=0. S^{-1}M = 0.