Height of a prime

The length of the longest chain of prime ideals contained in a given prime.
Height of a prime

Definition (height of a prime ideal)

Let RR be a and let pHAHAHUGOSHORTCODE51s1HBHB\mathfrak p\in .

The height of p\mathfrak p, denoted ht(p)\operatorname{ht}(\mathfrak p), is

ht(p)  :=  sup{n p0p1pn=p in Spec(R)}. \operatorname{ht}(\mathfrak p) \;:=\; \sup\{\, n \mid \exists\ \mathfrak p_0 \subsetneq \mathfrak p_1 \subsetneq \cdots \subsetneq \mathfrak p_n=\mathfrak p \text{ in } \operatorname{Spec}(R)\,\}.

Equivalent characterization (via localization)

Let RpR_{\mathfrak p} be the . Then

ht(p)  =  dim(Rp)  =  HAHAHUGOSHORTCODE51s3HBHB of the local ring Rp. \operatorname{ht}(\mathfrak p) \;=\; \dim(R_{\mathfrak p}) \;=\; \text{ of the local ring } R_{\mathfrak p}.

Examples

  1. In Z\mathbb Z.
    The prime ideals are (0)(0) and (p)(p) for primes pp.

    • ht((0))=0\operatorname{ht}((0))=0.
    • ht((p))=1\operatorname{ht}((p))=1, since (0)(p)(0)\subsetneq(p) is a maximal chain.
  2. In k[x,y]k[x,y].
    Let kk be a field.

    • ht((x))=1\operatorname{ht}((x))=1 because (0)(x)(0)\subsetneq(x) is a chain and (x)(x) is not maximal.
    • ht((x,y))=2\operatorname{ht}((x,y))=2 because (0)(x)(x,y)(0)\subsetneq(x)\subsetneq(x,y) is a chain of length 22, and (x,y)(x,y) is maximal.
  3. Height of a maximal ideal in a polynomial ring.
    In k[x1,,xn]k[x_1,\dots,x_n], the “origin” maximal ideal (x1,,xn)(x_1,\dots,x_n) has height nn (matching dim(k[x1,,xn])=n\dim(k[x_1,\dots,x_n])=n).