Yoneda embedding

The fully faithful functor sending an object to its Hom functor (a representable presheaf).
Yoneda embedding

Definition

Let C\mathcal{C} be a locally small . The Yoneda embedding is the

y:CSetCop y:\mathcal{C}\longrightarrow \mathbf{Set}^{\mathcal{C}^{op}}

defined as follows:

  • On objects ACA\in \mathcal{C}, set

    y(A)  =  HomC(,A):CopSet. y(A) \;=\; \mathrm{Hom}_{\mathcal{C}}(-,A):\mathcal{C}^{op}\to \mathbf{Set}.

    This is a (a representable presheaf).

  • On a morphism f:ABf:A\to B, define a

    y(f):HomC(,A)HomC(,B) y(f):\mathrm{Hom}_{\mathcal{C}}(-,A)\Rightarrow \mathrm{Hom}_{\mathcal{C}}(-,B)

    by postcomposition:

    y(f)X:HomC(X,A)HomC(X,B),(h:XA)fh. y(f)_X:\mathrm{Hom}_{\mathcal{C}}(X,A)\to \mathrm{Hom}_{\mathcal{C}}(X,B),\quad (h:X\to A)\mapsto f\circ h.

Here Cop\mathcal{C}^{op} is the and SetCop\mathbf{Set}^{\mathcal{C}^{op}} is the functor category of presheaves on C\mathcal{C}.

Fundamental property (fully faithful)

By the , the functor yy is fully faithful: for all objects A,BCA,B\in\mathcal{C},

HomC(A,B)    Nat(HomC(,A),HomC(,B)). \mathrm{Hom}_{\mathcal{C}}(A,B)\;\cong\;\mathrm{Nat}\big(\mathrm{Hom}_{\mathcal{C}}(-,A),\,\mathrm{Hom}_{\mathcal{C}}(-,B)\big).

Equivalently, C\mathcal{C} identifies with a of SetCop\mathbf{Set}^{\mathcal{C}^{op}} whose objects are precisely the representables.

Examples

Example (Set)

For a set AA, y(A)y(A) is the presheaf

XHomSet(X,A), X \longmapsto \mathrm{Hom}_{\mathbf{Set}}(X,A),

the set of functions XAX\to A. A map ABA\to B induces a natural transformation by postcomposition.

Example (Posets)

Let (P,)(P,\le) be a regarded as a category (one morphism xyx\to y iff xyx\le y).
Then for aPa\in P, the presheaf y(a)y(a) sends xx to a singleton set if xax\le a, and to the empty set otherwise. Thus y(a)y(a) encodes the principal down-set {xxa}\{x\mid x\le a\}.

Example (Grp)

For a group GG, y(G)y(G) is the presheaf

HHomGrp(H,G), H \longmapsto \mathrm{Hom}_{\mathbf{Grp}}(H,G),

the set of group homomorphisms into GG. A group homomorphism GGG\to G' induces a natural transformation by postcomposition.