Unit of an adjunction

For F ⊣ G, the unit η: Id_C ⇒ G∘F is the natural transformation corresponding to identities under the adjunction bijection.
Unit of an adjunction

Let F:CDF:\mathcal C\to\mathcal D and G:DCG:\mathcal D\to\mathcal C be with an FGF\dashv G.

Definition (Unit)

The unit of the adjunction is a

η:IdCGF \eta:\mathrm{Id}_{\mathcal C}\Rightarrow G F

characterized as follows: for each object cCc\in\mathcal C, the component

ηc:cG(Fc) \eta_c: c \longrightarrow G(Fc)

is the unique morphism corresponding to the identity idFcHomD(Fc,Fc)\mathrm{id}_{F c}\in\operatorname{Hom}_{\mathcal D}(F c, F c) under the adjunction bijection

HomD(Fc,d)HomC(c,Gd)(natural in c,d). \operatorname{Hom}_{\mathcal D}(F c,\, d)\cong \operatorname{Hom}_{\mathcal C}(c,\, G d) \quad\text{(natural in \(c,d\)).}

Equivalently, η\eta is the transpose of idF\mathrm{id}_F under the natural isomorphism of hom-bifunctors.

The unit η\eta and the ε\varepsilon satisfy the triangle identities (see ):

εFcF(ηc)=idFcfor all cC. \varepsilon_{F c}\circ F(\eta_c)=\mathrm{id}_{F c} \quad\text{for all }c\in\mathcal C.

Examples

  1. Free/forgetful (Set–Grp). For F:SetGrpF:\mathbf{Set}\to\mathbf{Grp} free group and U:GrpSetU:\mathbf{Grp}\to\mathbf{Set} forgetful with FUF\dashv U, the unit at a set XX is the function

    ηX:XU(F(X)) \eta_X: X \to U(F(X))

    sending xXx\in X to the corresponding generator in the underlying set of the free group.

  2. Product–exponential (Set). For the adjunction ()×X()X(-)\times X \dashv (-)^X in Set\mathbf{Set}, the unit at AA is the function

    ηA:A(A×X)X,ηA(a)(x)=(a,x). \eta_A: A \to (A\times X)^X, \qquad \eta_A(a)(x)=(a,x).

    It assigns to aa the constant-in-AA “graph” map XA×XX\to A\times X.

  3. Abelianization–inclusion (Grp–Ab). For ab:GrpAb\mathrm{ab}:\mathbf{Grp}\to\mathbf{Ab} left adjoint to i:AbGrpi:\mathbf{Ab}\hookrightarrow \mathbf{Grp}, the unit at a group GG is the canonical quotient homomorphism

    ηG:Gi(ab(G))G/[G,G]. \eta_G: G \twoheadrightarrow i(\mathrm{ab}(G)) \cong G/[G,G].