Representable functor

A Set-valued functor naturally isomorphic to a Hom functor.
Representable functor

Definition

Let C\mathcal{C} be a such that each hom-class HomC(A,B)\mathrm{Hom}_{\mathcal{C}}(A,B) is a (i.e. C\mathcal{C} is locally small).

A covariant F:CSetF:\mathcal{C}\to \mathbf{Set} is representable if there exists an object ACA\in \mathcal{C} and a

F    HomC(A,). F \;\cong\; \mathrm{Hom}_{\mathcal{C}}(A,-).

A contravariant F:CopSetF:\mathcal{C}^{op}\to \mathbf{Set} is representable if there exists an object ACA\in \mathcal{C} and a natural isomorphism

F    HomC(,A), F \;\cong\; \mathrm{Hom}_{\mathcal{C}}(-,A),

where Cop\mathcal{C}^{op} is the .

The object AA is called a representing object for FF. If FF is representable, then any two representing objects are uniquely .

Yoneda viewpoint

By the , natural transformations HomC(A,)F\mathrm{Hom}_{\mathcal{C}}(A,-)\Rightarrow F correspond bijectively to elements of F(A)F(A). In particular, a representation FHomC(A,)F\cong \mathrm{Hom}_{\mathcal{C}}(A,-) is determined by a “universal element” in F(A)F(A).

Examples

Example (Set: the identity functor)

In Set\mathbf{Set}, the identity functor Id:SetSet\mathrm{Id}:\mathbf{Set}\to \mathbf{Set} is representable by the one-point set 11:

HomSet(1,X)X, \mathrm{Hom}_{\mathbf{Set}}(1,X)\cong X,

since a function 1X1\to X is determined by the image of the unique element of 11. (Here “function” is .)

Example (Grp: the forgetful functor)

Let U:GrpSetU:\mathbf{Grp}\to \mathbf{Set} be the forgetful functor sending a group to its underlying set. Then UU is representable by Z\mathbb{Z} (the free group on one generator):

HomGrp(Z,G)U(G), \mathrm{Hom}_{\mathbf{Grp}}(\mathbb{Z},G)\cong U(G),

by sending a homomorphism φ:ZG\varphi:\mathbb{Z}\to G to φ(1)\varphi(1).

Example (RR-Mod: the forgetful functor)

Let U:R-ModSetU:R\text{-}\mathbf{Mod}\to \mathbf{Set} be the forgetful functor. Then UU is representable by the regular module RR:

HomR(R,M)U(M), \mathrm{Hom}_{R}(R,M)\cong U(M),

via φφ(1)\varphi\mapsto \varphi(1). This is natural in MM.