Opposite Category

The category obtained by reversing the direction of every morphism.
Opposite Category

Let C\mathcal C be a .

Definition

The opposite category Cop\mathcal C^{\mathrm{op}} is the category defined by:

  • Ob(Cop)=Ob(C)\mathrm{Ob}(\mathcal C^{\mathrm{op}})=\mathrm{Ob}(\mathcal C);
  • for objects A,BA,B, HomCop(A,B):=HomC(B,A). \mathrm{Hom}_{\mathcal C^{\mathrm{op}}}(A,B) := \mathrm{Hom}_{\mathcal C}(B,A). So a f:ABf:A\to B in Cop\mathcal C^{\mathrm{op}} is “the same arrow” as a morphism f:BAf:B\to A in C\mathcal C.

Composition and identities

  • The on an object AA is the same arrow idA\mathrm{id}_A as in C\mathcal C.
  • is reversed: if f:AB,g:BCin Cop, f:A\to B,\quad g:B\to C \quad \text{in } \mathcal C^{\mathrm{op}}, then in C\mathcal C these correspond to f:BAf:B\to A and g:CBg:C\to B, and the composite in Cop\mathcal C^{\mathrm{op}} is defined by gCopf:=fCg. g\circ_{\mathcal C^{\mathrm{op}}} f := f\circ_{\mathcal C} g.

Basic facts

  • Taking opposites is involutive: (Cop)op=C(\mathcal C^{\mathrm{op}})^{\mathrm{op}}=\mathcal C.
  • Many constructions come in dual pairs via CCop\mathcal C \leftrightarrow \mathcal C^{\mathrm{op}}.
    For instance, a morphism is a in C\mathcal C iff it is an in Cop\mathcal C^{\mathrm{op}}.

Examples

  1. Posets as categories: A (P,)(P,\le) can be viewed as a category with a unique morphism pqp\to q iff pqp\le q.
    Its opposite category corresponds to the reversed order \ge.

  2. Contravariance: A F:CDF:\mathcal C\to \mathcal D can be packaged as an ordinary F:CopDF:\mathcal C^{\mathrm{op}}\to \mathcal D.

  3. One-object categories from groups: A group GG defines a category with one object * and End()=G\mathrm{End}(*)=G.
    The opposite category corresponds to reversing multiplication (the “opposite group”); inversion gg1g\mapsto g^{-1} gives an isomorphism GGopG\cong G^{\mathrm{op}}.