Natural transformation

A morphism between functors given by components that commute with all structure maps.
Natural transformation

Let C,D\mathcal C,\mathcal D be , and let F,G:CDF,G:\mathcal C\to\mathcal D be .

Definition

A natural transformation η:FG\eta:F\Rightarrow G assigns to every XCX\in\mathcal C a

ηX:F(X)G(X) \eta_X:F(X)\to G(X)

in D\mathcal D, such that for every morphism f:XYf:X\to Y in C\mathcal C, the naturality condition

G(f)ηX  =  ηYF(f) G(f)\circ \eta_X \;=\; \eta_Y\circ F(f)

holds (composition in D\mathcal D; see ).

Equivalently, for each f:XYf:X\to Y the square commutes:

F(X)ηXG(X)F(f)G(f)F(Y)ηYG(Y). \begin{CD} F(X) @>\eta_X>> G(X)\\ @V F(f) VV @VV G(f) V\\ F(Y) @>>\eta_Y> G(Y). \end{CD}

The components ηX\eta_X are called the components of η\eta.

Examples

  1. Singleton map XP(X)X\to\mathcal P(X) (Set).
    Let Set\mathbf{Set} be the category of .
    Define the covariant “power set” functor P:SetSetP:\mathbf{Set}\to\mathbf{Set} by P(X)=P(X)P(X)=\mathcal P(X) and, for a f:XYf:X\to Y, let P(f):P(X)P(Y)P(f):\mathcal P(X)\to\mathcal P(Y) be the map Sf(S)S\mapsto f(S).
    Then the family ηX:XP(X)\eta_X:X\to\mathcal P(X), x{x}x\mapsto\{x\}, defines a natural transformation

    η:IdSetP, \eta:\mathrm{Id}_{\mathbf{Set}}\Rightarrow P,

    since P(f)({x})={f(x)}P(f)(\{x\})=\{f(x)\}.

  2. Postcomposition induces a natural transformation on representables.
    In any C\mathcal C, fix a morphism h:ABh:A\to B. Consider the contravariant hom-functors HomC(,A)\mathrm{Hom}_{\mathcal C}(-,A) and HomC(,B)\mathrm{Hom}_{\mathcal C}(-,B) (see ).
    Define, for each XX,

    ηX:HomC(X,A)HomC(X,B),fhf. \eta_X:\mathrm{Hom}_{\mathcal C}(X,A)\to \mathrm{Hom}_{\mathcal C}(X,B),\quad f\mapsto h\circ f.

    Naturality follows from associativity of composition.

  3. The evaluation map into the double dual (Vectk_k).
    In the category of kk-vector spaces, there is a natural transformation

    ev:Id() \mathrm{ev}:\mathrm{Id}\Rightarrow (-)^{\ast\ast}

    whose component at VV is the canonical linear map VVV\to V^{\ast\ast}, v(φφ(v))v\mapsto(\varphi\mapsto\varphi(v)).
    For finite-dimensional VV this component is an isomorphism, so ev\mathrm{ev} becomes a on the full subcategory of finite-dimensional spaces.