Left exact functor

An additive functor that preserves kernels (equivalently, exactness at the left end of short exact sequences).
Left exact functor

Let A,B\mathcal A,\mathcal B be and let F:ABF:\mathcal A\to\mathcal B be an additive .

Definition

The functor FF is left exact if it preserves finite ; equivalently (in abelian categories), if it preserves .

A standard “exact sequence” formulation is:

For every short exact sequence in A\mathcal A,

>0AuAvA0,> > 0 \longrightarrow A' \xrightarrow{u} A \xrightarrow{v} A'' \longrightarrow 0, >

the sequence

>0F(A)F(u)F(A)F(v)F(A)> > 0 \longrightarrow F(A') \xrightarrow{F(u)} F(A) \xrightarrow{F(v)} F(A'') >

is exact in B\mathcal B.

Equivalently, FF preserves monomorphisms and kernels, but need not preserve cokernels or epimorphisms.

Relation to other exactness notions

  • If FF is both left exact and , then FF is .
  • Any additive right adjoint functor between abelian categories is left exact (because right adjoints preserve limits).

Examples

  1. Hom\mathrm{Hom} is left exact. In R-ModR\text{-}\mathbf{Mod}, for a fixed RR-module MM, the functor

    HomR(M,):R-ModAb \mathrm{Hom}_R(M,-):R\text{-}\mathbf{Mod}\to \mathbf{Ab}

    is left exact: applying HomR(M,)\mathrm{Hom}_R(M,-) to a short exact sequence yields an exact sequence starting with 00. It is not generally right exact (failure of surjectivity at the right is measured by ExtR1(M,)\mathrm{Ext}^1_R(M,-)).

  2. Global sections of sheaves. For a topological space XX, the global sections functor

    Γ(X,):ShAb(X)Ab \Gamma(X,-):\mathrm{Sh}_{\mathbf{Ab}}(X)\to \mathbf{Ab}

    is left exact, but not right exact in general.

  3. Restriction of scalars (actually exact). If φ:RS\varphi:R\to S is a ring homomorphism, the restriction-of-scalars functor

    Resφ:S-ModR-Mod \mathrm{Res}_\varphi:S\text{-}\mathbf{Mod}\to R\text{-}\mathbf{Mod}

    is exact, hence left exact.