Exact functor

A functor between abelian categories that preserves all short exact sequences.
Exact functor

Let A,B\mathcal A,\mathcal B be and let F:ABF:\mathcal A\to\mathcal B be an additive .

Definition

The functor FF is exact if it preserves short exact sequences: whenever

0AuAvA0 0 \longrightarrow A' \xrightarrow{u} A \xrightarrow{v} A'' \longrightarrow 0

is exact in A\mathcal A, then

0F(A)F(u)F(A)F(v)F(A)0 0 \longrightarrow F(A') \xrightarrow{F(u)} F(A) \xrightarrow{F(v)} F(A'') \longrightarrow 0

is exact in B\mathcal B.

Equivalently,

F is exact     F is   and  . F \text{ is exact } \;\Longleftrightarrow\; F \text{ is and .}

In abelian categories, exactness can also be characterized as preservation of both and (hence images and coimages).

Examples

  1. Restriction of scalars. For a ring homomorphism φ:RS\varphi:R\to S, the forgetful/restriction functor

    Resφ:S-ModR-Mod \mathrm{Res}_\varphi:S\text{-}\mathbf{Mod}\to R\text{-}\mathbf{Mod}

    is exact: it does not change the underlying abelian group maps, so kernels and cokernels are preserved.

  2. Localization (commutative rings). If RR is commutative and SRS\subseteq R is multiplicative, then

    S1():R-ModS1R-Mod S^{-1}(-):R\text{-}\mathbf{Mod}\to S^{-1}R\text{-}\mathbf{Mod}

    is exact because S1()RS1RS^{-1}(-)\cong -\otimes_R S^{-1}R and S1RS^{-1}R is flat over RR.

  3. Tensor with a flat module / Hom from a projective module.

    • The functor RM-\otimes_R M is exact iff MM is flat.
    • The functor HomR(P,)\mathrm{Hom}_R(P,-) is exact iff PP is projective.

(These are standard sources of exact functors in module categories.)