Equalizer

A universal solution E → A making two parallel morphisms A ⇉ B equal after composition.
Equalizer

Let C\mathcal C be a and let f,g:ABf,g:A\to B be parallel in C\mathcal C.

Definition

An equalizer of ff and gg is a morphism e:EAe:E\to A such that:

  1. (Equalizing condition) fe=gef\circ e = g\circ e,
  2. (Universal property) for any morphism h:XAh:X\to A with fh=ghf\circ h=g\circ h, there exists a unique morphism u:XEu:X\to E such that eu=h. e\circ u = h.

Equivalently, e:EAe:E\to A is universal among arrows into AA on which ff and gg agree:

XuEeAf,gBh A with fe=ge,    fh=gh. \begin{CD} X @>u>> E @>e>> A @>{f,g}>> B \\ @V h VV @. @. @. \\ A @. @. @. \end{CD} \qquad\text{with } f\circ e=g\circ e,\;\; f\circ h=g\circ h.

An equalizer (when it exists) is a special case of a .

Basic properties

  • The equalizer morphism e:EAe:E\to A is always a : it is “injective” in the categorical sense.
  • In an , the equalizer of f,gf,g can be identified with a : Eq(f,g)    ker(fg). \mathrm{Eq}(f,g)\;\cong\;\ker(f-g).

Examples

  1. Set\mathbf{Set}.
    If f,g:ABf,g:A\to B are functions, the equalizer is the subset

    E={aAf(a)=g(a)}A, E=\{a\in A \mid f(a)=g(a)\}\subseteq A,

    with e:EAe:E\hookrightarrow A the inclusion.

  2. Grp\mathbf{Grp}.
    For homomorphisms f,g:GHf,g:G\to H, the equalizer is the subgroup

    E={xGf(x)=g(x)}G, E=\{x\in G \mid f(x)=g(x)\}\le G,

    included into GG.

  3. Ab\mathbf{Ab} (or RR-Mod).
    For module homomorphisms f,g:MNf,g:M\to N, the equalizer is the submodule

    E=ker(fg)M, E=\ker(f-g)\subseteq M,

    with the inclusion EME\hookrightarrow M.