Counit of an adjunction

For F ⊣ G, the counit ε: F∘G ⇒ Id_D is the natural transformation corresponding to identities under the adjunction bijection.
Counit of an adjunction

Let F:CDF:\mathcal C\to\mathcal D and G:DCG:\mathcal D\to\mathcal C be with an FGF\dashv G.

Definition (Counit)

The counit of the adjunction is a

ε:FGIdD \varepsilon: F G \Rightarrow \mathrm{Id}_{\mathcal D}

characterized as follows: for each object dDd\in\mathcal D, the component

εd:F(Gd)d \varepsilon_d: F(Gd) \longrightarrow d

is the unique morphism corresponding to the identity idGdHomC(Gd,Gd)\mathrm{id}_{G d}\in\operatorname{Hom}_{\mathcal C}(G d, G d) under the adjunction bijection

HomD(Fc,d)HomC(c,Gd). \operatorname{Hom}_{\mathcal D}(F c,\, d)\cong \operatorname{Hom}_{\mathcal C}(c,\, G d).

Equivalently, ε\varepsilon is the transpose of idG\mathrm{id}_G.

The counit ε\varepsilon and the η\eta satisfy the triangle identities:

G(εd)ηGd=idGdfor all dD. G(\varepsilon_d)\circ \eta_{G d}=\mathrm{id}_{G d} \quad\text{for all }d\in\mathcal D.

Examples

  1. Free/forgetful (Set–Grp). For FUF\dashv U (free group and forgetful), the counit at a group HH is the homomorphism

    εH:F(U(H))H \varepsilon_H: F(U(H)) \to H

    sending a formal word in the underlying set U(H)U(H) to its evaluation in HH.

  2. Product–exponential (Set). For ()×X()X(-)\times X \dashv (-)^X in Set\mathbf{Set}, the counit at BB is the evaluation map

    εB:BX×XB,εB(f,x)=f(x). \varepsilon_B: B^X \times X \to B, \qquad \varepsilon_B(f,x)=f(x).
  3. Abelianization–inclusion (Grp–Ab). For abi\mathrm{ab}\dashv i, the counit at an abelian group AA is (canonically) the identity isomorphism

    εA:ab(i(A))  A, \varepsilon_A: \mathrm{ab}(i(A)) \xrightarrow{\ \cong\ } A,

    since the abelianization of an already abelian group is itself.