Automorphism

An isomorphism from an object to itself; an invertible endomorphism.
Automorphism

Let C\mathcal C be a and AA an of C\mathcal C.

Definition

An automorphism of AA is an

f:AA. f:A\longrightarrow A.

Equivalently, it is an f:AAf:A\to A for which there exists g:AAg:A\to A such that

gf=idA,fg=idA, g\circ f = \mathrm{id}_A,\qquad f\circ g = \mathrm{id}_A,

where idA\mathrm{id}_A is the .

The set of automorphisms of AA is denoted AutC(A)\mathrm{Aut}_{\mathcal C}(A).

Group structure

With as the operation, AutC(A)\mathrm{Aut}_{\mathcal C}(A) is a group:

  • identity element: idA\mathrm{id}_A,
  • inverse: f1f^{-1} (the inverse isomorphism).

Examples

  1. Set\mathbf{Set}: Automorphisms of a set XX are exactly the XXX\to X.
    Thus AutSet(X)\mathrm{Aut}_{\mathbf{Set}}(X) is the permutation group of XX.

  2. Grp\mathbf{Grp}: Automorphisms of a group GG are group isomorphisms GGG\to G.
    Example: AutGrp(Z){±1}\mathrm{Aut}_{\mathbf{Grp}}(\mathbb Z)\cong\{\pm 1\}, since any automorphism is determined by where it sends 11.

  3. RModR\mathbf{-Mod}: Automorphisms of an RR-module MM are the invertible RR-linear maps MMM\to M.
    For M=RnM=R^n, AutR(Rn)\mathrm{Aut}_R(R^n) identifies with the group GLn(R)\mathrm{GL}_n(R) of invertible n×nn\times n matrices over RR.