Adjoint functors

A pair of functors F ⊣ G equipped with a natural hom-set bijection (equivalently, a unit and counit satisfying the triangle identities).
Adjoint functors

Let C,D\mathcal C,\mathcal D be a and let F:CDF:\mathcal C\to\mathcal D and G:DCG:\mathcal D\to\mathcal C be .

Definition (Adjunction)

We say FF is left adjoint to GG, and write FGF \dashv G, if for every object cCc\in\mathcal C and dDd\in\mathcal D there is a bijection of sets

Φc,d:HomD(Fc,d)        HomC(c,Gd), \Phi_{c,d}:\operatorname{Hom}_{\mathcal D}(F c,\, d)\;\xrightarrow{\;\cong\;}\;\operatorname{Hom}_{\mathcal C}(c,\, G d),

which is natural in cc and dd (i.e. it is a natural isomorphism of bifunctors HomD(F,)HomC(,G)\operatorname{Hom}_{\mathcal D}(F-, -)\cong \operatorname{Hom}_{\mathcal C}(-, G-)).

Elements of Hom\operatorname{Hom} are ; the naturality condition says that Φ\Phi commutes with pre- and post-composition in the two variables (using in C,D\mathcal C,\mathcal D).

Equivalent data: unit and counit

An adjunction FGF\dashv G is equivalently specified by:

such that the triangle identities hold for all cCc\in\mathcal C, dDd\in\mathcal D:

εFcF(ηc)=idFc,G(εd)ηGd=idGd. \varepsilon_{F c}\circ F(\eta_c)=\mathrm{id}_{F c}, \qquad G(\varepsilon_d)\circ \eta_{G d}=\mathrm{id}_{G d}.

(Here id\mathrm{id} is the .)

If moreover η\eta and ε\varepsilon are , then FF and GG form an .

Examples

  1. Free/forgetful (Set–Grp). The free group functor F:SetGrpF:\mathbf{Set}\to\mathbf{Grp} is left adjoint to the forgetful functor U:GrpSetU:\mathbf{Grp}\to\mathbf{Set}. Concretely,

    HomGrp(F(X),H)HomSet(X,U(H)), \operatorname{Hom}_{\mathbf{Grp}}(F(X),\,H)\cong \operatorname{Hom}_{\mathbf{Set}}(X,\,U(H)),

    naturally in a XX and a group HH.

  2. Product–exponential (Set). Fix a set XX. In Set\mathbf{Set}, the functor ()×X(-)\times X is left adjoint to the exponential functor ()X=Hom(X,)(-)^X=\operatorname{Hom}(X,-):

    Hom(A×X,B)Hom(A,BX), \operatorname{Hom}(A\times X,\,B)\cong \operatorname{Hom}(A,\,B^X),

    naturally in A,BSetA,B\in\mathbf{Set}. (This is the usual currying bijection.)

  3. Abelianization–inclusion (Grp–Ab). Let i:AbGrpi:\mathbf{Ab}\hookrightarrow \mathbf{Grp} be the inclusion. The abelianization functor ab:GrpAb\mathrm{ab}:\mathbf{Grp}\to\mathbf{Ab}, GG/[G,G]G\mapsto G/[G,G], is left adjoint to ii:

    HomAb(ab(G),A)HomGrp(G,i(A)). \operatorname{Hom}_{\mathbf{Ab}}(\mathrm{ab}(G),\,A)\cong \operatorname{Hom}_{\mathbf{Grp}}(G,\,i(A)).