Let C , D \mathcal C,\mathcal D C , D be a category
and let
F : C → D F:\mathcal C\to\mathcal D F : C → D and G : D → C G:\mathcal D\to\mathcal C G : D → C be functors
.
Definition (Adjunction) We say F F F is left adjoint to G G G , and write F ⊣ G F \dashv G F ⊣ G , if for every object c ∈ C c\in\mathcal C c ∈ C and d ∈ D d\in\mathcal D d ∈ D there is a bijection of sets
Φ c , d : Hom D ( F c , d ) → ≅ Hom C ( c , G d ) ,
\Phi_{c,d}:\operatorname{Hom}_{\mathcal D}(F c,\, d)\;\xrightarrow{\;\cong\;}\;\operatorname{Hom}_{\mathcal C}(c,\, G d),
Φ c , d : Hom D ( F c , d ) ≅ Hom C ( c , G d ) , which is natural in c c c and d d d (i.e. it is a natural isomorphism of bifunctors
Hom D ( F − , − ) ≅ Hom C ( − , G − ) \operatorname{Hom}_{\mathcal D}(F-, -)\cong \operatorname{Hom}_{\mathcal C}(-, G-) Hom D ( F − , − ) ≅ Hom C ( − , G − ) ).
Elements of Hom \operatorname{Hom} Hom are morphisms
; the naturality condition says that Φ \Phi Φ commutes with pre- and post-composition in the two variables (using composition
in C , D \mathcal C,\mathcal D C , D ).
Equivalent data: unit and counit An adjunction F ⊣ G F\dashv G F ⊣ G is equivalently specified by:
such that the triangle identities hold for all c ∈ C c\in\mathcal C c ∈ C , d ∈ D d\in\mathcal D d ∈ D :
ε F c ∘ F ( η c ) = i d F c , G ( ε d ) ∘ η G d = i d G d .
\varepsilon_{F c}\circ F(\eta_c)=\mathrm{id}_{F c},
\qquad
G(\varepsilon_d)\circ \eta_{G d}=\mathrm{id}_{G d}.
ε F c ∘ F ( η c ) = id F c , G ( ε d ) ∘ η G d = id G d . (Here i d \mathrm{id} id is the identity morphism
.)
If moreover η \eta η and ε \varepsilon ε are natural isomorphisms
, then F F F and G G G form an equivalence of categories
.
Examples Free/forgetful (Set–Grp). The free group functor F : S e t → G r p F:\mathbf{Set}\to\mathbf{Grp} F : Set → Grp is left adjoint to the forgetful functor U : G r p → S e t U:\mathbf{Grp}\to\mathbf{Set} U : Grp → Set . Concretely,
Hom G r p ( F ( X ) , H ) ≅ Hom S e t ( X , U ( H ) ) ,
\operatorname{Hom}_{\mathbf{Grp}}(F(X),\,H)\cong \operatorname{Hom}_{\mathbf{Set}}(X,\,U(H)),
Hom Grp ( F ( X ) , H ) ≅ Hom Set ( X , U ( H )) , naturally in a set
X X X and a group H H H .
Product–exponential (Set). Fix a set X X X . In S e t \mathbf{Set} Set , the functor ( − ) × X (-)\times X ( − ) × X is left adjoint to the exponential functor ( − ) X = Hom ( X , − ) (-)^X=\operatorname{Hom}(X,-) ( − ) X = Hom ( X , − ) :
Hom ( A × X , B ) ≅ Hom ( A , B X ) ,
\operatorname{Hom}(A\times X,\,B)\cong \operatorname{Hom}(A,\,B^X),
Hom ( A × X , B ) ≅ Hom ( A , B X ) , naturally in A , B ∈ S e t A,B\in\mathbf{Set} A , B ∈ Set . (This is the usual currying bijection.)
Abelianization–inclusion (Grp–Ab). Let i : A b ↪ G r p i:\mathbf{Ab}\hookrightarrow \mathbf{Grp} i : Ab ↪ Grp be the inclusion. The abelianization functor a b : G r p → A b \mathrm{ab}:\mathbf{Grp}\to\mathbf{Ab} ab : Grp → Ab , G ↦ G / [ G , G ] G\mapsto G/[G,G] G ↦ G / [ G , G ] , is left adjoint to i i i :
Hom A b ( a b ( G ) , A ) ≅ Hom G r p ( G , i ( A ) ) .
\operatorname{Hom}_{\mathbf{Ab}}(\mathrm{ab}(G),\,A)\cong \operatorname{Hom}_{\mathbf{Grp}}(G,\,i(A)).
Hom Ab ( ab ( G ) , A ) ≅ Hom Grp ( G , i ( A )) .